

UTILIZATION OF FAST RUNNING MODELS IN BURIED BLAST SIMULATIONS OF GROUND VEHICLES FOR SIGNIFICANT COMPUTATIONAL EFFICIENCY

Li, Stowe, Vlahopoulos, Mohammad, Barker, Thyagarajan

GVSETS

maintaining the data needed, and including suggestions for reducin	completing and reviewing the colle g this burden, to Washington Head ould be aware that notwithstanding	ection of information. Send comme quarters Services, Directorate for l	ents regarding this burden esti information Operations and Ro	mate or any other aspe eports, 1215 Jefferson	ng existing data sources, gathering and ct of this collection of information, Davis Highway, Suite 1204, Arlington y with a collection of information if it
1. REPORT DATE 2. REPORT TYPE 06 AUG 2013 Briefing Charts				3. DATES COVERED 10-03-2013 to 25-07-2013	
4. TITLE AND SUBTITLE UTILIZATION OF FAST RUNNING MODELS IN BURIED BLAST SIMULATIONS OF GROUND VEHICLES FOR SIGNIFICANT COMPUTATIONAL EFFICIENCY				5a. CONTRACT NUMBER W56HZV-08-C-0236	
				5b. GRANT NUMBER	
				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S) ravi thyagarajan				5d. PROJECT NUMBER	
				5e. TASK NUMBER	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Michigan Engineering Services,2890 Carptr Road # 1900,Ann Arbor,Mi,48108				8. PERFORMING ORGANIZATION REPORT NUMBER #24071	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army TARDEC, 6501 East Eleven Mile Rd, Warren, Mi, 48397-5000				10. SPONSOR/MONITOR'S ACRONYM(S) TARDEC	
				11. SPONSOR/MONITOR'S REPORT NUMBER(S) #24071	
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited					
13. SUPPLEMENTARY NOTES GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM (GVSETS), SET FOR AUG. 21-22, 2013					
14. ABSTRACT Briefing Charts					
15. SUBJECT TERMS					
16. SECURITY CLASSIFI		17. LIMITATION	18. NUMBER	19a. NAME OF	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	OF ABSTRACT Public Release	OF PAGES 24	RESPONSIBLE PERSON

Report Documentation Page

Form Approved OMB No. 0704-0188

- Objectives
- Methods
 - Fast Running Models
 - Blast Event Simulation sysTem Methodology and Validation
- Case Study: Notional V-hull Structure
- Future Applications and Development

Objectives

- Survivability assessment requires thorough and systematic exploration of threat effects
- Current computational approaches require significant wall-clock time
- Fast Running Models (FRMs) are paired with the Blast Event Simulation sysTem (BEST) to accelerate analysis

Fast Running Models

- FRMs comprise a reduced-order modeling approach that captures relevant physics governing relationships between input parameters and output effects
- Scenario parameters are input and time-series effects are output, much like complex multi-physics computational analysis
- Results are computed in seconds
- FRMs are a fusion of Principal Component Analysis (PCA) and Kriging

Principal Component Analysis

- Reduce dimensionality of data set
- Distill blast loading histories into 'modal' information
- No linear limitations, PCA isolates fundamental characteristics that can be used as an expansion basis
- PCA used for nonlinear structural analysis, image processing, shock analysis, automotive crash analysis, molecular dynamics and more

Principal Component Analysis

Decompose response matrix X:

$$X = \begin{bmatrix} x_1(t_1) & \dots & x_1(t_k) \\ \vdots & \ddots & \vdots \\ x_J(t_1) & \dots & x_J(t_k) \end{bmatrix}$$

$$X = USV^T$$

$$X = \begin{bmatrix} \Phi & \Phi_{\tau} \end{bmatrix} \begin{bmatrix} D & 0 \\ 0 & Z \end{bmatrix} \begin{bmatrix} \eta \\ \eta_{\tau} \end{bmatrix}$$

Each column is a "mode"

Only diagonal terms energy in each "mode"

Modal participation terms at each time step

Kriging and Metamodels

Time-dependent, reduced-order model:

$$[X(\gamma)] = [U(\gamma)][W(\gamma)][V(\gamma)]^{T}$$

Matrices generated by metamodels (Kriging):

$$[U(\gamma)], [W(\gamma)], [V(\gamma)]^T$$

- Analyses are performed at a limited number of training points
- The values for [U], [W], [V] at the training points are used for developing the metamodels

Previous Applications

- SAE-2005-01-2373 surface ship shock analysis
- SAE-2007-01-1744 automotive crash analysis
- SAE-2006-01-0762 uncertainty analysis for occupant safety under blast loads

Blast Event Simulation sysTem

- Series of nested panels with buttons, input boxes, and drop down menus
- Organizes and automates mesh generation and simplifies simulation and post-processing
- Capable of defining and launching simulations and creating post-processing files through command line prompts and a suite of Fortran executables
- The FRM capability was developed within BEST

Previous Validation

Vlahopoulos et al., Army Science 2010

BEST Structure

Generate air/soil/explosive model for 2-stage analysis

Material definition for soil, air, explosive. Varies due to moisture content.

Creation of projectiles as part of the explosive threat

LS-Dyna Eulerian analysis for 2-stage analysis

LS-Dyna Lagrangian analysis for 2-stage analysis

Create fast running models for underbody blast studies

Use fast running models for underbody blast studies

LS-Dyna Lagrangian analysis

model for coupled analysis

BEST Validation Studies

 Emerging validation results for v-hull structure with varying geometry and charge size

MSTV MODELING AND SIMULATION, TESTING AND VALIDATION

 Emerging correlation results with averaged experimental tests are at least as strong as fully-coupled ALE simulations

10 Degree Target (600g charge)

20 Degree Target (600g charge)

20 Degree Target (800g charge)

30 Degree Target (600g charge)

FRM Terminology

- Input parameters
- Training points
- Loading points
- FRM applicable range

BEST FRM Build Interface

Build training point files and FRM

Specify parameter ranges

View loading point and FRM – configuration

BEST FRM Use Interface

Desired mine/ vehicle configurations for response study

Automatically populated applicability ranges

Visual representation of FRM applicable ranges

Case Study - FRM

TARDEC V-hull

- 20 Training Points
- 9 Loading Points
- 2 Evaluation Points

Training Points

Training point ranges:

- x location range: 0.7m
- y location range: 1 m
- ground clearance range: 0.65 m
- depth of burial: 0.0508 m
- charge size: Stanag Level 2

Vehicle Dimensions:

- width: 1.978
- length: 3.1025
- height: 1.6499

• EP-1 LP-3:

• EP-1 LP-8:

• EP-2 LP-3

• EP-2 LP-6

Case Study - Metamodel

- FRMs can also be utilized to predict structural response
- Displacement of vehicle underbody tracked at all bottom nodes (630 total) to study maximum displacement
- Roof velocity tracked at 5 locations on roof to study maximum average velocity

Maximum Average Velocity $\overline{V}_{\it Max}$ at One Surface of Hull: (Four Sides and Roof).

$$V_{j}(t_{k}) = \sqrt{V_{xj}^{2}(t_{k}) + V_{yj}^{2}(t_{k}) + V_{zj}^{2}(t_{k})} \quad \text{(jth Node at time step tk)}$$

$$\overline{V}(t_k) = \sqrt{\sum_{j=1}^{N} V_j^2(t_k)} / N$$
 (N=5) at time step t_k

$$\overline{V}_{Max} = Max[\overline{V}(t_k)]$$

Metamodel Results

 Both the maximum displacement and the maximum average velocity results correlate well with LS-DYNA simulation over 12 evaluation points

Conclusions

- FRMs enable rapid evaluation of an entire matrix of vehicle/explosive configurations
- Both blast histories and structural responses can be modeled using FRMs
- The FRM capability has been incorporated in BEST to model any time-domain based physical event

Backup Slide 1

Two-step BEST approach justification:

